首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2379篇
  免费   137篇
  国内免费   1040篇
  2024年   2篇
  2023年   53篇
  2022年   130篇
  2021年   136篇
  2020年   149篇
  2019年   138篇
  2018年   127篇
  2017年   99篇
  2016年   110篇
  2015年   208篇
  2014年   333篇
  2013年   307篇
  2012年   333篇
  2011年   296篇
  2010年   246篇
  2009年   242篇
  2008年   98篇
  2007年   141篇
  2006年   155篇
  2005年   59篇
  2004年   19篇
  2003年   22篇
  2002年   10篇
  2001年   13篇
  2000年   14篇
  1999年   13篇
  1998年   20篇
  1997年   16篇
  1996年   12篇
  1995年   5篇
  1994年   8篇
  1993年   10篇
  1992年   13篇
  1991年   6篇
  1990年   3篇
  1989年   1篇
  1985年   1篇
  1983年   4篇
  1958年   1篇
  1950年   3篇
排序方式: 共有3556条查询结果,搜索用时 31 毫秒
81.
Heat shock factors (HSFs) in plants regulate heat stress response by mediating expression of a set of heat shock protein (HSP) genes. In the present study, we isolated a novel heat shock gene, TaHSF3, encoding a protein of 315 amino acids in wheat. Phylogenetic analysis showed that TaHSF3 belonged to HSF class B2. Subcellular localization analysis indicated that TaHSF3 localized in nuclei. TaHSF3 was highly expressed in wheat spikes and showed intermediate expression levels in roots, stems, and leaves under normal conditions. It was highly upregulated in wheat seedlings by heat and cold and to a lesser extent by drought and NaCl and ABA treatments. Overexpression of TaHSF3 in Arabidopsis enhanced tolerance to extreme temperatures. Frequency of survival of three TaHSF3 transgenic Arabidopsis lines was 75–91 % after heat treatment and 85–95 % after freezing treatment compared to 25 and 10 %, respectively, in wild-type plants (WT). Leaf chlorophyll contents of the transformants were higher (0.52–0.67 mg/g) than WT (0.35 mg/g) after heat treatment, and the relative electrical conductivities of the transformants after freezing treatment were lower (from 17.56 to 18.6 %) than those of WT (37.5 %). The TaHSF3 gene from wheat therefore confers tolerance to extreme temperatures in transgenic Arabidopsis by activating HSPs, such as HSP70.  相似文献   
82.
83.
We examined the potential differences in tolerance to hypoxia by two species of apple rootstocks. Stomatal behavior and photosynthesis were compared between Malus sieversii and Malus hupehensis. Plants were hydroponically grown for 15 days in normoxic or hypoxic nutrient solutions. Those of M. sieversii showed much greater sensitivity, with exposure to hypoxia resulting in higher leaf concentrations of abscisic acid (ABA) that prompted stomatal closure. Compared with the control plants of that species, stomatal density was greater in both new and mature leaves under stress conditions. In contrast, stomatal density was significantly decreased in leaves from M. hupehensis, while stomatal length was unaffected. Under stress, the net photosynthetic rate, stomatal conductance and chlorophyll contents were markedly reduced in M. sieversii. The relatively hypoxia‐tolerant genotype M. hupehensis, however, showed only minor changes in net photosynthesis or chlorophyll content, and only a slight decrease in stomatal conductance due to such treatment. Therefore, we conclude that the more tolerant M. hupehensis utilizes a better protective mechanism for retaining higher photosynthetic capacity than does the hypoxia‐sensitive M. sieversii. Moreover, this contrast in tolerance and adaptation to stress is linked to differences in their stomatal behavior, photosynthetic capacity and possibly their patterns of native distribution.  相似文献   
84.

Aims

Fine root is an important part of the forest carbon cycle. The growth of fine roots is usually affected by forest intervention. This study aims to investigate the fine root mass, production, and turnover in the disturbed forest.

Methods

The seasonal and vertical distributions of fine root (diameter ≤2 mm) were measured in a Chinese cork oak (Quercus variabilis Blume) forest. The biomass and necromass of roots with diameters ≤1 mm and 1-2 mm in 0-40 cm soil profiles were sampled by using a sequential soil coring method in the stands after clear cutting for 3 years, with the stands of the remaining intact trees as the control.

Results

The fine root biomass (FRB) and fine root necromass (FRN) varied during the growing season and reached their peak in August. Lower FRB and higher FRN were found in the clear cutting stands. The ratio between FRN and FRB increased after forest clear cutting compared with the control and was the highest in June. The root mass with diameter ≤1 mm was affected proportionately more than that of diameter 1-2 mm root. Clear cutting reduced FRB and increased FRN of roots both ≤1 mm and 1-2 mm in diameter along the soil depths. Compared with the control, the annual fine root production and the average turnover rate decreased by 30.7 % and 20.7 %, respectively, after clear cutting for 3 years. The decline of canopy cover contributed to the dramatic fluctuation of soil temperature and moisture from April to October. With redundancy discriminate analysis (RDA) analysis, the first axis was explained by soil temperature (positive) and moisture (negative) in the control stands. Aboveground stand structure, including canopy cover, sprout height, and basal area, influenced FRB and FRN primarily after forest clear cutting.

Conclusions

This study suggested that the reduction of fine root biomass, production, and turnover rate can be attributed to the complex changes that occur after forest intervention, including canopy damage, increased soil temperature, and degressive soil moisture.  相似文献   
85.
RING-finger proteins (RFP) function as ubiquitin ligases and play key roles in plant responses to biotic and abiotic stresses. However, little information is available on the regulation of RFP expression. Here, we isolate and characterize the RFP promoter sequence from the disease-resistant Chinese wild grape Vitis pseudoreticulata accession Baihe-35-1. Promoter-GUS fusion assays revealed that defense signaling molecules, powdery mildew infection, and heat stress induce VpRFP1 promoter activity. By contrast, the RFP1 promoter isolated from Vitis vinifera was only slightly induced by pathogen infection and heat treatment. By promoter deletion analysis, we found that the ?148 bp region of the VpRFP1 promoter was the core functional promoter region. We also found that, in Arabidopsis, VpRFP1 expressed under its own promoter activated defense-related gene expression and improved disease resistance, but the same construct using the VvRFP1 promoter slightly improve disease resistance. Our results demonstrated that the ?148 bp region of the VpRFP1 promoter plays a key role in response to pathogen and heat stress, and suggested that expression differences between VpRFP1 and VvRFP1 may be key for the differing disease resistance phenotypes of the two Vitis genotypes.  相似文献   
86.

Aims

Aimed to understand how soil water was depleted by deep roots, the effects of drip irrigation and stand age on the deep root distribution, rooting depth, and soil water profile dynamics were investigated in a jujube (Ziziphus jujube Mill. CV. Lizao) plantation.

Methods

A soil coring method with a LuoYang shovel was used for sampling until no more roots were found.

Results

It showed that the maximum fine rooting depth (<2 mm in diameter) increased with stand age and it extended deep into the soil rapidly during the first 4 years, but more slowly in the subsequent 4 years. The maximum rooting depth reached 5 m in a 9-year-old jujube plantation, but it stabilized and did not increase thereafter. However, it was 10 m in a 12-year-old jujube plantation that lacked irrigation.

Conclusions

We found that the application of 33.3 mm of irrigation water (equivalent to 7 % of the local annual precipitation) could halve the maximum rooting depth, thereby reducing deep soil water depletion. Our results showed that a low-volume water supply reduced the maximum rooting depth in jujube and prevented the depletion of the deep soil water. Appropriate drip irrigation is an effective water management strategy for sustainable artificial forest development in semiarid regions.  相似文献   
87.
The effect of fruit maturity on UV-B-induced post-harvest anthocyanin accumulation in red Chinese sand pear (Pyrus pyrifolia Nakai) cultivar ‘Mantianhong’ was evaluated. During the irradiation, compared with the fruit harvested at 20 days before harvest (DBH) and 10 DBH, the mature fruit (harvested at commercial harvest date) had higher soluble solids content, soluble sugars concentration but lower firmness and starch content. In addition, higher content of anthocyanin has been detected in mature fruits than in immature fruits due to the significant increase in the expression of genes related to anthocyanin biosynthesis, especially PpCHS, PpF3H, PpANS, PpUFGT, PyMYB10 and PpbHLH in red Chinese sand pears. Hierarchical clustering analysis suggested that most genes related to anthocyanin biosynthesis showed a coordinate expression pattern. These findings are helpful in understanding the molecular mechanism of anthocyanin biosynthesis and regulation, which could lead to the development of new technologies for improving fruit color in Chinese sand pears and other fruits.  相似文献   
88.
Among the 17 plant pathogenesis-related (PR) protein families, only PR10 family is intracellular and cytosolic. PR proteins are expressed in response to pathogen challenge and abiotic stresses in higher plants. However, the molecular mechanisms of their actions remain poorly understood. In a previous work, we isolated a PR10 gene from Erysiphe necator-resistant Chinese wild Vitis sp. (Baihe-35-1) and it was designated as VpPR10.1. In this study, yeast two-hybrid method was used to screen proteins interacting with VpPR10.1 proteins. Twenty-one ESTs were isolated and sequenced. All sequences were compared using BLASTx to identify presumptive orthologs. Several proteins associated with VpPR10.1 protein were screened, including CNR8, UFGT6, HSP, DEAD-box, Trx h2, Grx C9 and GLOX. These proteins are closely related to defensive action of plants against pathogens and abiotic stresses. Our results reveal that VpPR10.1 gene may be involved in hormone signaling, programmed cell death and defense responses of grapevine.  相似文献   
89.
The physiological reasons associated with differential sensitivity of C3 and C4 plant species to soil compaction stress are not well explained and understood. The responses of growth characteristics, changes in leaf water potential and gas exchange in maize and triticale to a different soil compaction were investigated. In the present study seedlings of triticale and maize, representative of C3 and C4 plants were subjected to low (L – 1.10 g cm−3), moderate (M – 1.34 g cm−3) and severe (S – 1.58 g cm−3) soil compaction level. Distinct differences in distribution of roots in the soil profile were observed. Plants of treatments M or S in comparison to treatment L, showed a decrease in leaf number, dry mass of stem, leaves and roots, and an increase in the shoot to root ratio. A drastic decrease in root biomass in M and S treatments in the soil profile on depth from 15 to 40 cm was observed. Any level of soil compaction did not influence the number of seminal and seminal-adventitious roots but decreased their length. The number and total length of nodal roots decreased with compaction. Changes of growth traits in M and S treatments in comparison to the L were greater for maize than for triticale and were accompanied by daily changes in water potential (ψ) and gas exchange parameters (PN, E, gs). Differences between M and S treatments in daily changes in ψ for maize were in most cases statistically insignificant, whereas for triticale, they were statistically significant. Differences in the responses of maize and triticale to soil compaction were found in PN, E and gs in particular for the measurements taken at 12:00 and 16:00. The highest correlation coefficients were obtained for the relationship between leaf water potential and stomatal conductance, both for maize and triticale, which indicates the close association between stomata behavior and changes in leaf water status.  相似文献   
90.
In this report, 156 hygromycin-resistant mutants were generated via restriction enzyme-mediated insertional (REMI) mutagenesis. All mutants were subjected to a bioassay on detached leaves. Five mutants (T4, T39, T71, T91, and T135) showed reduced symptom development, whereas one mutant (T120) did not exhibit any symptoms on the leaves compared with the wild type. The pathogenicity of these mutants was further assayed through the spray inoculation of whole seedlings. The results demonstrated that the pathogenicity of the T4, T39, T71, T91, and T135 mutants was reduced, whereas the T120 mutant lost its pathogenicity. Southern blot analysis revealed that the plasmids were inserted at different sites in the genome with different copy numbers. Flanking sequences approximately 550, 860, and 150 bp were obtained from T7, T91, and T120, respectively through plasmids rescue. Sequence analysis of the flanking sequences from T7 and T91 showed no homology to any known sequences in GenBank. The flanking sequence from the T120 mutant was highly homologous to MAPKK kinases, which regulates sexual/asexual development, melanization, pathogenicity from Cochliobolus heterostrophus. These results indicate that REMI and plasmids rescue have great potential for finding pathogenicity genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号